ED 060 628

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
EM 009 634

Bork, Alfred M.; Mosmann, Charles

Teaching Conversations with the ¥DS Sigma 7. Systems
Description.

California Univ., Irvine. Physics Computer
Development Project.

National Science Foundation, Washington, D.C.

26 May 71

25p.

MF-$0.65 HC-$3.29

Computational Linguistics; *Computer Assisted
Instruction; *Computer Programs; Program
Descriptions; Programed Instruction; Programings;
*Programing Languages; Programing Problems
Macros; Metasymbol; Sigma 7

Some computers permit conventional programing

languages to be extended by the use of macro-instructions, a
sophisticated programing tool which is especially useful in writing
instructional dialogs. Macro-instructions (or "macro's") are complex
commands defined in terms of the machine language or other
macro-instructions. Like terms in higher—-order languages they can
expand to a variable number of actual machine instructions. The
system described here is based on the use of the macro-assembler of
the Sigma-7 computer, called Metasymbol. Metasymbol allows for the
use of machine language, the definition and use of
macro-instructions, and the inclusion of FORTRAN subroutines. This
system allows the teacher considerable flexibility in composing
instructioral dialogs. Specifics of programing are discussed, and an
example ccmputer run given. (RB)

. o
' U.S. DEPARTMENT OF HEALTH.,
EDUCATION & WELFARE
OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRO-
oo DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
N\ INATING IT. POINTS OF VIEW OR OPIN-
O IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
< CATION POSITION OR POLICY.

TEACHING CONVERSATIONS WITH THE XDS SIGMA 7

System Desox_‘d.ption

v

Alfred M. Bork
Charles Mosmann

University of California
Irvine, California 92664

May 26, 1971

physics computer development project, university of california, irvine, 92664

EMOOT 6 3Y

CONTENTS

1. INTRODUCTION

2. A SIMPLE OVERV]

3. DESCRIPTION OF

Formal S¢

4. GRAMMATICAL R
S. DEVELOPING AND

7. BIBLIOGRAPHY

8. KNO EDGEME]

U.S. DEPARTMENT OF HEALTH.
EOUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZAT!ION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

SIGMA 7

ity of caiiforizia, irving, 92664

CONTENTS
1. INTRODUCTION
2. A SIMPLE OVERVIEW
3. DESCRIPTION OF COMMANDS
Pczmal Statements
pDisplaying Information to the Student
Accepting Information from the Student '
Analyzing Student Input
Manipulating Strings
Manipulating Numbers
Using Counters
Restart
Saving Student Responses
Employing FORTRAN Subroutines
Ending the Program
4. GRAMMATICAL RULES
S. DEVELOPING AND IMPLEMENTING STUDENT-COMPUTER DIALOGUES
6. EXAMPLE OF A CIALOGUE
7. BIBLIOGRAPHY
8. ACKNOWLEDGEMENTS

1]}

INTRODUCTION

Cohputer dialogues forxr instructional purposes are somelimes written
ip specialized languages developed for just that purpose (Course-
writer, Foil, Planit). Such languages have speciai advantages,
particularly for authors unskilled in computer programming; but
limitations may exist and the skilled programmer is prevented from
using the full power of the computer. Also, they are available
only on particular machines. An alternative is the use of general
purpos¢ computer languages; such languages as SNOBOL, PL/1l, JOSS,
BASIC, and FORTRAN have been used for teaching conversations. The
advantage of such languages is that most of the facilities of the
computer are availaple to the teacher, althcugh practically it may
be difficult to employ particular facilities. Further, théy are
widely available. A third alternative--the use of machine lan-
guages--has almost pevér been considered. Although it allows
maximum flexibility to the programmer, coding directly in machine
language tends to be slow, complex, and expensive. However, some
modern assembly progrars permit machine language' to be extended

by the use of macro-imucructions. Using such a system, the pro-
grammer has the facility to extend ihie language by adding his own
complex commands (called "macro-iputructions” or “macros®) and
defining them in terms of the machine language or other macros.
Like terms in higher-order ianguages. these macro-instructions, can
expand to a variable number of actual machine instructions, thus
providing sophisticated programming tools.

The system g8

tions, and EN
Metasymbol
FORTRAN and

applicatio

These capali
use in der“
using it ad
developed 4
we written
described
added to

sharing morj

system is I
dialogues.
plete”--ong
tional fea
depends, ol
but the idd

macro-assgen

Bl

;”%1 purposes are someimes written
k for just that purpose (Course-
lages have special advantages,
) in computer programming; but
B ieq programmer is prevented from
ger. Also, they are available
lternative is the usc of general
anguages as SNOBOL, PL/l, JOSS,
for teaching conversations. The
t most of the facilities of the
her, although practically it may
facilities. Further, théy are
tive--the use of machine lan-
idered. Although it allows
mer, coding directly in machine
. and expensive. However, some
Bchine language to be extended
Using such a system, the pro-
the language by adding his own
histructions” or "macros®) and
hine language or other macros.
tes, these macro-instructions, can
kual machine instructions, thus
lhg tools.

h2

The system described here is based on the use of the macro-assembler
of the Sigma-7 computer, called "Metasymbol." Metasymbol allows for
the use of machine language, the definition and use of macro-instruc-
tions, and the inclusion of FORTRAN subroutines. Thus the user of
Metasymbol has the total flexibility of machine language with both
FORTRAN and added facility to add the terms he needs for his particular

application.

These capabilities make a macro-assembler extremely attractive for
use in developing a system for producing instructional dialogues. 1In
using it as the basis for our system, we cannot say that we have
developed a language for composing conversationalvprograms: nor have

we written a compiler or interpreter of scme language. The system

described here is simply a flexikle set of macro-instructions which,
added to the existing capabiljties of Metasymbol and the BTM time-
sharing monitor on the Sigma-7, allows a teacher considerable
flexibility and convenience in writiﬁg instructional dialcques. The
system is now available and is being used to write instructional
dialogues. It should be clear that siuch a system is never "com-
plete”"--one of its major advantages is the ease with which addi-
tional features can be added and new terms be defined. The system
depends, obviously, on the facilities of Metasymbol and the Sigma-7;
but the idea could easily be.adapted to any computing system with a

macro-assem:ler of the general type of Metasymbol.

A SIMPLE OVERVIEW

An example will help to introduce the subject. The following flow
chart illustrates a small part of an instructional dialogue. The
situation is trivial, presumably for a first grader; it is used

here only for illustrative purposes.

A message is typed to the student; a student response, typed at the
terminal, is accepted; various scans are made on the input informa-
tion and, depending on that input, decisions are made and responses
are typed to the studernt. The rounded boxes on the chart contain
messages to be typed and the square box shows the responses antici-
pated. 1In this example, first tlie message "What is 5 x 6?" is typed.
If the student responds with the correct answer, we tell him, “good”;
if he is adding, .we tell him and let him try again. In all other
cases, he is simply asked to try again.

B3

The correspd
ment leads
types a quejg
whether ccrf

branches if

B3

ct. The following flov

ctional dialogue. The

st grader; it is used

bnt response, typed at the
hade on the input informa-
1S are made and responses
es on the chart contain
ows the responses antici-
"What is 5 x 6?” is typed.
swer, we tell him, "yood™;

again. In all other

ERI!

Aruitoxt provided by Eic:

The corresponding program segment is shown below.
ment leads to the message appearing on the student terminal.
types a question mark and waits for student input.
whether certain strings are present in what the student types
branches if so. OTHER shows where control is to go if one of
the anticipated inputs is not found.

labels which allow the IF and TO statements to refer to these

in the program.

SYSTEM DIALOG

MES1 WRIT?
INPUT
IF
1

IF

MES2 . WRITE

MES4 WRITE

MES3 —

'WHAT IS 5 x 62°'

‘11* ,MES2

*ELEVEN' ,MES2

’30',MES3

*THIRTY' ,MES3

MES4

'YOU ARE ADDING. TRY AGAIN'
MES1

*NO. TRY AGAIN'

MES1l

END DIALOG

IF checks

The WRITE state-

INPUT
to see

and

Some of the lines begin with

points

BS

DESCRIPTION OF COMMANDS

The simple example shown above used only a few commands; a large
repertory is available. The following paragraphs offer brief des-
criptions of most of them, grouped more or less by function. Some
more esoteric ones are omitted for the sake of brevity; there ére
also a number of synonyms of the more important commands which are
not included here. The intention is to give the reader a feeling
for the kinds of capabilities available. The Users Manual includes

precise and more detailed descriptions of the functions of each of

the commands.

l. Formal Statements

It is imposrtant to remember that the system is actually no more than
a set of terms or commands which are defined so that they may be used
with Metasymbol. Thus the conventions of that program (and the
operating system in which it is embedded) must be adhered to. The
conventions for format of statements, legal statement labels, and so
on, are described briefly below in Chapter 4 ("Grammatical Rules”)}

and will be found in detail in documentation of Sigma-7 zoftware.

(See Bibliography.)

SYSTEM. The first statement in a program must be
SYSTEM DIALOG. This informs the Metasymbol assembly
program that the pProgram which you have written uses
the dialcogue macro-instructions described here.

NAME. The author may wish to assign a unique name to
his instructional program. If he wants it to be called
“"PHYS," for instance, the second statement of his pro-
gram should be NAME 'PHYS'.

2.

BS

i few commands; a large
:agféphs offer brief des-
less by function. Some
e of brevity; there are
~-rtant commands which are
ve the reader a feeling
The Users Manual includes

the functions2 of each of

Mem is actually no more than
ed so that they may be used
that program (and the

must be adhered to. The

pl statement labels, and so
4 ("Grammatical Rules"”)

ion of Sigma-7 software.

a program must be

e Metasymbol assembly
iyou have written uses
described here.

issign a unique name to
he wants it to be called
statement of his pro-

ERIC

Aruitoxt provided by Eic:

2.

3.

END. The last statement Oof any program must be END.
The statement END XYZ indicates that this is the last
statement of the program and also that the statement
labelled XYZ is the first statement to be executed
when a student uses the instructional dialogue. The
statement END DIALOG indicates that the program is

to begin with the NAME or START command.

Displaying information to the student

WRITE. This is the basic command for causing informa-
tion to be typed (or otherwise displayed) at a student
console. The argument (that part of the statement
which follows the word WRITE) can be the information
itself, enclosed in single quotes: WRITE 'THIS IS A
STRING'. Or it can refer to a string by name rather
than directly: WRITE MES8 causes the string of
characters stored at MES8 to be typed. (Section 5
will explain how strings are stored.) This is more
convenient than repeating the message if the same
message is to be used in several places. Each execu-
tion of a WRITE command begins with a carriage return
and line feed, starting a new line.

OuT. This command is the same as WRITE except that
it will not begin a new line. This can be useful in
making up a display line out of several strings which
are stored or computed independently.

SKIP generates one or more blank lines. The argument
indicates the number to be skipped; if the argument

is omitted, one line is assumed. Thus SKIP 5 generates
S blank. lines. SKIP generates one.

GRAPH. The instruction GRAPH X,Y,20 will graph 20
points using numbers stored in X as the horizontal
displacement and the corresponding values stored in
Y as the vertical displacement. All numbers will be
scaled. .

Accepting information from the student

INPUT. This command will cause a carriage return, two
Tine feeds and a question mark to be executed at the
student terminal. Then it waits for the student to
enter material. The student indicates that his message
is complete by executing a carriage return. The

B6

B7

maximum amount Of material he can enter is set at

380 characters but this can easily be extended. (le
can use linc feceds for long inputs--he isn't expected
to get 380 characters on cne line!)

INBELL is an alternative to INPUT. It does not return
the carriage or type a question mark: rather a bell is
sounded to indicate that input is expected. This form
!+ useful for completing equations or sentences or
filling in tabular data.

4. Analyzing scudent i-put

S.
IF is a flexible command for examing student input. Before att
Some cxamples may best display its power. IF th -
"VELOCITY',T34 means that if the word VELOCITY is e studer
anywhere in the material which the student has just The string

typed, then the next statement to be executed is
that labelled 7T34. IF M3,T34 means if the string

at M3 is in the input, g¢ to T34. IF ('HORSE','COW',
'PIG’) ,T34 means that the branch is to occur if any
of the three strings appears. If the conditions of
an IF statement are not met, the next statement in
sequence is executed.

IFONLY. The IF command searches for a match any-
where in the student input; IFONLY calls for an
exact match between the indicated string and the
student input.

IFNULL. Students often enter nothing, pushing only
the carriage return key. This command checks for
‘this condition and branches to an author-supplied
message.

IFYES checks for various possible affirmative
replies.

IFBEFORE takes into account the relative position
of symbols in the response. It refers to the last
successful match in an IF statement. For example,
the sequence: : :

IF 'ENERGY ' ,E1
El IFBEFORE 'POTENTIAL',E2

tests first to see whetfher the word ENERGY appears
anywhere in the input and, 21f it does, then tests

ERIC 9

Aruitoxt provided by Eic:

B7

he can enter is set at
easily be extcnded. (He
inputs—~-he isn't expected
e line!)

INPUT. It does not return
Rtion mark:; rather a bell is
Bput is expected. This form
fruations or sentences or

B r examing student input.
lay its power. IF

if the word VELOCITY is

ich the student has just
ent to be executed is

34 means if the string

fto T34. IF ('HORSE','COW’,
@branch is to occur if any
s. If the ccnditions of

., the next statement in

|.rches for a match any-
8- IFONLY calls for an
Hicated string and the

er nothing, pushing only
grhis command checks for
to an author-supplied

bssible affirmative

the relative position
It refers to the last
statement. For example,

IAL',E2

the word ENERGY apgoars
if it does, then tests

PAFuiToxt Provided by ERIC

5.

to see whether the word POTENTIAL appears in the
string after the last matched word.

IFFILTH has been found useful in some contexts: it
checks the input line for a number of common examples
of objectionable language.

OTHER. A series of IF statements may be followed by
an OTHER which indicates the action to be taken if none
of the conditions specified in the IF statements occur.
It converts to a GOTO or unconditional branch instruc-
tion.

Manipulating Strings

Before attempting to match a string, it may be desirable to modify

the student input, putting it into some more standarized format.

The string manipulation commands provide this capability.

NOBLANK.- One problem in matching formulae or equa—- -
- T -

tions 1s that blanks may appear in random places.
This command removes all blanks from the input string.

DELETEALL removes from the input ail occurances of a
specified string. Thus, DELETEALL 'AND' removes the
word "and" everywhere it appears in the student input.

SUBALL. The author may wish to modify the input in
other ways. This command replaces all occurances of
cne symbol string with another. Thus, SUBALL'**',+'
replaces the double asterisk with an up-arrow where-
ever it appears.

ADDAST, which takes formula input by students and
transforms it into a BASIC-like form. It inserts
asterisks betweer letters, or between numbers and
letters; it replaces the FORTRAN double asterisk
with an up-arrow; it deletes blanks; etc.

MOVE. Scmetimes it is convenient to store all or
part of an input string for later »ce. The various
forms of the MOVE command facilita+e this. MOVE A,B
moves the entire string A to location B. MOVE A,B,5
moves the first five characters from A to B.

DEFINE. To secure space for moving, it is necessary
to define a label and indicate how long a string it
is to hold. The statement DEFINE B,50 reserves space
for fifty characters, with the label B.

10

Q

ERIC

Aruitoxt provided by Eic:

STRING. 1If characters are to be stored into a string
Initially, this command is used. L3 STRING 'VELOCITY'
indicates that the eight character string "VELOCITY' 1is
to be stored at label L3. (Strings are stored in a
fashion different than that used in most Sigma -7 software.
The first word contains the number of characters; the
characters begin in the second word.

6. Manipulating numbers

Numbers typed by students appear initially as characters in strings.
To use these numbers 'in internal calculations, it is necessary to

convert them to a suitable form. To display the results of com-

putation the reverse conversion is needed. The following commands

facilitate these conversions.

NUMBER. An input string which should be only a numbzr
in character form can be converted into a real number

by means of this command. The statement NUMBER TIME,

NOGOOD will examine the contents of the input, either

converting it to floating point form and storing it at
TIME or (if this is not possible because of extraneous
characters, etc.) branching to NOGOOD.

SCAN. To separate a string into the part containing a
number and the strings before and after the number, one
can use this command. SCAN NUMST,STBEF,STAF,ERR means
,Store the number string in NUMST, the characters

preceding it in STBEF, and the characters following in
STAF; if the string has no recognizable number, branch

to ERR.

SCANE# performs the same functions as SCAN but converts
the numerical portion into a floating point number,
rather than transferring it as a character string
(i.e., it is egquivalent to SCAN followed by NUMBER).

IPNUMEX will test a string to see whether it is a
number. The command branches to the specified location
if the string is exclusively a number.

AROUND tests a floating point number (N3 to see whether
1t 1s within a given range (£) of a number quantity (S}
and if so, branch (GOTO): AROUND N,S,E,GOTO.

11

B

Often in a dia~w
student has be‘
branch or ano
student shouldl

and testing ¢ .

BY

o be stored into a string
§sed. L3 STRING 'VELOCITY'
racter string "VELOCITY' 1is
Strings are stored in a

fused in most Sigma -7 software.
umber of characters; the

N ally as characters in strings.
lations, it is necessary to
Riisplay the results of com-

' ded. The following commands

The statement NUMBER TIME,

ents of the input, either

oint form and storing it at
sible because of extraneous
to NOGOOD.

into the part containing a

Bpre and after the number, one
NUMST,STBEF ,STAF ,ERR means

NUMST, the characters

the characters following in

frecognizable number, branch

ctions as SCAN but converts

a floating point number,

® as a character string
SCAN followed by NUMBER) .

to see whether it is a
es to the specified location
ly a number.

lint number (N) to see whether
£ (E) of a number quantity (S)
BROUND N,S,E,GOTO.

ERIC

Aruitoxt provided by Eic:

BETWEEN tests the size of a floating point number.
BETWEEN N,BOTTOM,TOP,GOTO tosts whether N is greater
than BOTTOM and less than TOP and branches to GOTO if

this is the case.

DEFNUM reserves storage for a number which is to be
used 1n the program. The argument is the name (or names,

if more than one) of the variable.

NUMWRITE starts a new line and then prints from one to

four numbers.

RANDOM generates random numbers. RANDOM X,A,B stores
in X a random number between A and B, or, if A and B
are omitted, between 0 and 1.

7. Using Counters

Often in a dialog the instructor wants to note how many times the
student has been through a given loop, whether he has taken one
branch or another, or his past performance, to determine where the

student should go next. The mechanism for doing is as though setting

and testing counters.

COUNTER is the command to identify the name of counter
and set its initial value. COUNTER A indicates that A
is a counter with an initial value of zero. COUNTER B,5
indicates that B is a counter with the initial value of
S. COUNTER (Cl1l,C2,C3) indicates that three counters are
to be established with initial values of zero.

BUMP increases the value of a specified counter or counters
by one: BUMP (C1,C2).

DECREASE decreases thrhe value of the specified counter(s)
by one.

RESET resets the specified counters. RESET (A,B),3 resets
A and B to 3. If the number is omitted, zero is assumed.

ADCDCOUNT adds thz contents of specified counters:
ADDCOUNT A,B adds ~ounter A to counter B and stores the

sum 1n A.

Bl4y

R11

TO with a single argument is a simple unconditional The
branch statement. The statement TO FRAME4, (2Z,GE,S),

however, will cause a branch to FRAME4 if and only if of
counter 22 is greater than or equal to 5. The sccond

part of the second argument indicates the logical relation- sorti

ship and can be any of the following, with the usual
meaning: GT, NE, LT, LE, EQ, GE. If it is omitted, GE
is assumed.

lo.
SWITCH is an alternate command for testing a counter.
It works like a FORTRAN computed GOTO. SWITCH A, (A0,Al, It
A2,A3,A4) indicates the labels of locations to be branched X
to when the counter A has the values of 0, 1, 2, 3, and 4; is p
if A is greater than 4, the next statement is executed. £
as

8. Restart
Sometimes it is inconvenient for a student to finish an =2ntire con-
versational lesson in one sitting. A facility to let him pick up

where he left off keeps him from going through the whole thing again.

ENTRY is the command which permits restart. Whenever one

1s executed as a student uses the program, its location 11.
and the student ID are saved on disk. Thus, the latest

entry point which the student has reached is preserved.

This is the point from which he will be restarted.

9. Saving Student Responses

The author may wish to save information about rtudent responsos for

later study and as an input for later revisions of his pfogram.

SAVE copies onto a disk file the current contents of
the input buffer, togther with time and date. This
record is identified by a name supplied as an argument
to SAVE. The command can also be used to save the
value of the counters.

SAVEIDL does the same thing but, in addition, saves the
student's ID.

ERIC | 13

Aruitoxt provided by Eic:

R11

e unconditional

FRAME4, (22,GE,S),

E4 if and only if

to 5. The second

s the logical relation-
, with the usual

it is omitted, GE

esting a counter.

0. SWITCH A, (AQ0,Al,
cations to be branched
of 0, 1, 2, 3, and 4;
tement is executed.

finish an entire con-
y to let him pick up

h the whole thing again.

restart. Whenever one
rogram, its location
k. Thus, the latest
eached is preserved.

1 be restarted.

student responnos for

ns of his pfogram.

rrent contents of
and date. This
lied as an argqument
sed to save the

addition, saves the

ERIC

Aruitoxt provided by Eic:

Bl

The teacher can access the files created by using available facilities

of the Sigma-7 system, particularly "Ferrct", or through special

sorting programs.

10.

Employing FORTRAN subroutines

It is possible to use the full power of FORTRAN within a dialog.

This

is particularly useful when a large amount of calculation is required,

as for simulation.

11.

FORTRAN is the command to introduce such a subroutine.
A typical command is FORTRAN POLLY, (X,Y¥,2) where POLLY
is the name of the FORTRAN subroutine and X, ¥, and 2
are the arguments for the subroutine. The routine it-
self must be compiled in the background 'using the
FORTRAN IV compiler and loaded along with the rest of

the program.

Ending the program

STOP. At a point in the program where the student is
to terminate because the lesson is over (this may not
be the last statement in the program as the program is
written), this statement is used to terminate the
program..

2

O

ERIC

Aruitoxt provided by Eic:

B13

GRAMMATICAL RULES

Oonly a few simple grammatical rules need to be followed in preparing
programs. As indicated earlier, these are largely dictated by the

conventions of Metasymbol and other systems programs on the Sigma-7.

A statement label can be placed in any statement but it is usually
only useful if the statement is referred to by another statement.
All labels must begin at the beginning of the line; an initial space
indicates that the statement has no label. The same label can be
used only once; multiple appearances would make references to that

label ambiguous.

A command should be preceded and followed by at least one space. Some
commands have several arguments: There should be no spaces between
them as the first space after the arguments indicates the end of the

statement. (Spaces within literals are an exception.)
Literal strings are enclosed in single quotes. To indicate a single

quote as part of a string, two successive single quotes must be used:

for example, 'THIS ISN''T CORRECT'.

15

DEVELOPING AND IM

Developing and en
can be done in ma
evolve its own st
possible procedur

can perform most

Design and coding

The initial task
people with both
into effective wa
experience with c
involved with it.
the kinds of thin
the specification

themn.

This might be a £
Section Two. The
partisular comput
serve other funct
to document a pro
teachers to look

might want to use

to be followed in preparing
largely dictated by the

fns programs on the Sigma-7.

atement but it is usually
to by another statement.
the line; an initial space
. The same label can be

d make references to that

ould be no spaces between
hts indicates the end of the

exception.)

gotes. To indicate a siagle

single quotes must be used:

ERIC

Aruitoxt provided by Eic:

B1Y

B by at least one space. Some

B14

DEVELOPING AND IMPLEMENTING STUDENT-COMPUTER DIALOG

Developing and e¢ntering conversational computer teaching =equences
can be done in many different ways. Each individual or group will
evolve its own style for such work. This section suggests one

possible procedure, attempting to involve people in the jobs they

can perform most efficiently.

Design and coding

The initial task is the design of the material. This must involve
people with both detailqd knowledge of the subject matter and insight
into effective ways of teaching it. These individuals mz; have little
experience with computer programming and little desire to become
involved with it. They will naturally require a good understanding of
the kinds of things which are possible but they will want to produce
the specifications for their dialogues in the form most convenient to

them.

This might be a flow chart form--similar to the <ne shown above in
Section Two. The material in this form could be independent of any
particular computer system and of any language. The flow chart would
serve other functions as well. A good flow chart is an excellent way
to document a program. It will also be a convenient way for other
teachers to look over the material quickliy so as to decide whether they

might want to use it with their students.

16

Q

ERIC

Aruitoxt provided by Eic:

The next stage is to convert the flow chart into the statements which
will make up the program and enter these statements into the computer.
The system we have employed has been to type the statements directly
from an on-line terminal using a text-editing program (EDIT) available
on.the Sigma-7. Since a vast amount of typing is necessary even for
a simple dialogue, a very useful practice has been to use professional
typists for the bulk of the work of traﬂscribing programs from flow

charts.

The typists who will do the work are shown some flow charts and given
simple explanations of how they work. They are then introduced to the

use of computer terminals and the conventions of the editing systen.

With some assistance at first, the typist is able to type directly from

the flow chart. Thus, she knows that when she sees the square boxes,
she will have to write a series of IF statements, and that the

rounded boxes lead to WRITE. Experience both at Irvine and at Harvard
indicates that competent secretaries quickly pick this up. During

the first few sessions, someone experienced in using the terminal
{perhaps a-'student) should be present to give advice when unusual

situations arise.

A complicated dialog will have areas which cannot be transcribed
8ucce$sfu11y by the secretary. The secretary is told that if she does
not understand something, she should put a row of asterisks. This
serves as a marker to indicate that some editing work is needed at

this point.

R15

The nex
on disk

person

R15

chart into the statements which
ese statements into the computer.
:to type the statements directly
p-editing program {(EDIT) available
:of typing is necessary even for
tice has been to use professional

,radscribing programs from flow

. shown some flow charts and given
They are then introduced to the
ventions of the editing system.
pist is able to type directly from
when she sees the square boxes,
statements, and that the
bnce both at Irvine and at Harvard
quickly pick this up. During
ienced in using the terminal

to give advice when unusual

which cannot be transcribed
becretary is told that if she does
put a row of asterisks. This

some editing work is needed at

[AFuiToxt Provided by ERIC

B16

The next step is the conversion of the secretary's material, as stored
on disk, into a working program. A student assistant may be the best
person to perform this task. He need not have a detailed knowledge of
programming but he must undersiand flow charting and the use of the
commands better than the typist. If problems arise which the student
assistant cannot handle, he should have access tc an experienced pro-
grammer. He uses the on-line editing facility to correct errors or
-omissions of the typists and leaves a complete program stored on disk.
Although it may still contain errors, it is now a program in the form

acceptable to the Metasymbol assembler.

Assembly

After *he conversational program has reached this state, it must be
assembled into a working (binary) program, debugged, and tested before

being released for student use.

Metasymbol programs must be assembled as a batch job, either from
control cards or from a terminal in the BTM system. In either case,
the disk file continuing the course material will be the source input
file to the assembler. The dialog facilities are kept as a "system”
in the Sigma-7 Metasymbol sense; it is stored on disk under the name
"DIALOG". It is this system to which the initial statement. of the

program refers.

Here is a procedure for assembling the program, using BTM and assuming
binary output. The file with the conversation program (the source
input file) is called COURSE, (you might, of course, give it a different

name) and the file for keeping the binary output of the assembler is

L 4 - R]7

2OURSEBGC (again, not a required name). The following 'cards' would

perform the assembly:

1JoB (accounting information--inguire locally
for details)

ILIMIT (TIME,S)

1ASSIGN M:SI, (FILE,COURSE)

!ASSIGN M:BO, (FILE,COURSEBO)

IMETASYM 1Ls,S1,B0O,AC(9999)

System dialog is assumed to be in account 9999. The METASYMBOL option
BO and SI speéify binary output and source input. LS means "list
source.™ (Other options are available. The reader is referred to the

Metasymbol manual, referenced in the Bibliography, for details.)

As with all programs of any complexity, several runs will be necessary
before an error-f?ee assembly is achieved. The assembly program will
identify errors:; the cause of the trouble is usually obvious once
pointed ou?: occasionally, however, the advice of an experienced pro-

grammer may be necessary.

Running the program

The result of the successful assembly is a binary file, a program
almost ready to run. This binary file can be loaded from a terminal.
The authors will wvant to try the programs, looking for bugs, after it
has been assembled successfully; copies of the flow chart and the
program are valuable aids during this testing. The main branches will
all have to be checked; however, testing of this kind will not discover

all tne bugs:. only student use will do that! DELTA (an on-line

19

debugging aid
programmer in
labelled stat

entry.

The final vex
should be gen

easy to call

(PRO: is the

the computer.

When the stud
procedure, pr

the word STOP

R17

following 'cards' would

ion--inquire locally

P999. The METASYMBOL option
input. LS means "list
e reader is referred to the

bgraphy, for details.)

eral runs will be necessary
The assembly program will
N s usually obvious once

ice of an experienced pro-

B8 binary file, a program

be loaded from a terminal.
looking for bugs, after it
the flow chart and the

ling. The main branches will
this kind will not discover

! DELTA (an on-line

B14

debugging aid on the Sigma-7) is also very useful to the experienced
programmer in program checking, as it allows the user to go to any
labelled statement: he need not start from the beginning or a restart

entry.

The final version of the program, which will be used by the student,
should be generated as a "load module.” The student will then find it

easy to call for it:

1RUN

LOAD MODULE FID: PROP

:G

(PROP is the name of the program; underscored characters are "yped by

the computer.)

When the student wants to leave the-program he can follow the usual
procedure, pressing the escape key twice or he can type, at any input,
the word STOP. If he types STOP and if restarts are included in the
program, he is reminded to use the same identification the next time he

tries this dialog.

-

<0

- - ‘ B19Y

EXAMPLE OF A DIALCG

Perhaps the best explanation of the dialog system is an illustration.
The fragment of a dialog on the following page is a typical example

of the material which has been writte:. using this facility. The reader
may wish to examine it rather closely, for it illustrates several

aspects of the system.

The first thing he may notice 7s that most of the commands are "WRITE":;
few of the more exotic commands described in Chapter Three have been
used. This is to be expected; the bulk of these programs is made up
of conversations with the student and there is remarkably little other

coding.

The example is indeed a fragment, chosen out of the middle of a much
longer lesson. Hence it has no beginning (SYSTEM DIALOG) or end
(END DIALOG). The countars (ELEC,GRAV) are defined elsewhere in the
program. It should be possible for the careful reader to follow the
dialog and - see how it is constructed. Some additional clues are
provided on the page following the dialog itself. 1If one follows
all the paths through the segment, he will see that they all come
out again at L36, which is the beginning of the next part of the

program.

21

10

20

30

40

50

CONTL

_wR1
W&
[ND
We]
Wl
nR1]
W]
1A

COAT _ wRITE

Les

T8
ke

*1
JFFILTh

INE
ClF

~2

IF

IF
IF

Bu

Las |
Leg

L29

L3Q

L301

WP !

L33

(138
Wl

LL2S

wR
Wi

wR

ELEC2

hR
wWR

wR

oKyl

Te

B1Y

B is an illustration.
a typical example
s facility. The reader

f lustrates several

@ie commands are "WRITE":
MEpter Three have been
3 Programs is made up

{ emarkably little other

2:the middle of a much
DIALOG) or end
ined elsewhere in the
reader to fcllow the
'ftional clues are
£. If one follows
nat they all come

| next part of the

10

20

40

50

B2u

1BLR PRBBLEY T8_FING SOME'_
COMTL “::§z§‘ h'PEAswE ééﬁrne RELATIVE STRENGTH B8F 7
WRITE TELECTRICAL ANL GRAVITATIENAL FURCES'
WRITE IBE YBL RAVE ANY SUGGESTISN AS 18 AN IVMFPERTANT!
wRITE *FHYSICAL SYSTEM WHERE £9TW ELECTRICAL'
o WE1TE " CAND GHAVITATIBANAL FBRCE MUST BE!
WRJTE _ 'PRESENT !
T8 L2&
COAT WRITE __ _'YOU''RE DBING_FINE!
’ TR asUT
L2 RESET (ELECsGRAV) = . _
r3 INPUT
JFFILTk CIRT2
»2 IF 'YES',L25
_ IF. .. _ . . 'N8'%L26 e e e e
T TaF YELEC',L33
15 'FRBT',L3C e
i3 (VSUN', ISTARY , 1GALAX ', "THERMBN ') 2LL2S
1F ('HYDRY', 'ATOMY) ,L 308
BLMP GRAV
SAVE 1SYSTEM!' . L
T8 GRAV2: (GRAV,2)
WR]TE $1V 1M KAVING_TRBUBLE UNCERSTANDING! L
WRITE TYBUes WE WANT A SYSTEM THAT 1S BF FUNCe!
wR1TE ' AMENTAL IMPBRYAMCE,BUT IS STILL ! e
- WRITE 'SIMFLE AND FASILY ANALYZABLEJEFORE' _
mARITE VANSWERING AGAIN, THINK 8F FULNCAMENTALS
_ _WRITE____ 'FARTICLESs' _ e
T8 M1
£ BLMP ELEC e
“ECL ugxrsg € tTHINK ABBUY ELEMENTARY PARTICLESs!
wWR1TE "TRY AGAIN?
Te Mi
L2s WRITE YTHEN TELL ME toM}
"L26 T SWITCR ELEC,{TLEC1:ELEC2)
L2 WRITE YW e
B T8 £33
L29 WRITE o
T8 L33
L39Q WRITE __'PRETINS ARE A FBSSIBILITY,BLY I AMy
o WRITE YONLY PREBGRAMMEC T8 CBASICER A FAIRH
WRITE '8F ELECTKBNSs ' S
T8 L36
L301 WRITE TATBMS ARE A PBSSIBILITY BLT!
WRITE 71 AM PROGRAMMED FER A PAIR 8F ELECTRBNS.1,L36
L33 WRITE *GEBDreeE WILL WORK WITW A FAIRY
’ wWRITE "8F ELLECTRENSY,L36
LL25 WRITE YA SUN IS A CBMPLEX THERMOANUCLEAR SYSTEMY
WRITE TINVOLVING ALL THE FORCESe BLY wE NEED AY
WRITE FSIMFLER PHYSICAL SYSTENM. MAKE ANBTHRER STAR!
WRITE TAT [TelsMy
ELEC2 WRITE *TRY, INSTEAD BF ANSWERING NE 7 L
’ WRITE tese WE WANT TW@ ELECTRBHANSe!
SKIP 1
- T8 L36 .. ce - -

B2l

Line 1 and line 9: CONTl and CONT are alternate entries to this

portion of the program, depending on factors which have

gone before.

Line 9: This statement means that the program is to go to CONT1l if
the counter ELEC is greater than or equal to 1. IF ELEC is

zero, "You're doing fine" is typed first.

Line 10. Note the use of double guotes to indicate single guotes

inside a literal.

Line 12: Before entering the major set of decisions in this segment,

the counters which will be used are reset to zero.

Line 13: The student is asked to respond and the response is

examined for various key words.

Line 20: If none of the anticipated responses is received, the
‘counter GRAV is "bumped” or increased and another message
is written (lines 21-28.) Note that the author has chosen
to SAVE all responses which did not include any of the

anticipated key words, to analyze later.

Line 22: 1If the student has given unanticipated responses twice
(when GRAV is greatér‘ihéﬁ\br“equal.tghzltﬂgp further
attempt is made to get the answer out of him; he is told

what the correct response is (at GRAV2).

23

ERIC

Aruitoxt provided by Eic:

jre alternate entries to this

d-ending on factors which have

e program is to go to CONT1l if
than or equal to 1. Irf ELEC is

”is typed first.

f'tes to indicate single guotes

set of decisions in this segment,

used are reset to zero.

Espond and the response is

gords.

responses is received, the

pbr increased and another message
Note that the author has chosen
h did not include any of the

analyze later.

inanticipated responses twice
or equal to 2). no further
answer out of him; he is told

f is (at GRAV2).

ERIC

Aruitoxt provided by Eic:

B2

BIBLIOGRAPHY

This description is far from complete and offers little explanation
of the requirements of the Sigma-7 software on which our system
depends. The appropriate manuals for further information are as

follows:

Sigma Symbol and Metasymbol Manual (900%52)
Batch Timesharing Monitor Reference Manual (901577)

Batch Timesharing Monitor Users Guide (9016,3!}

These documents are published by

Xerox Data Systems
701 South Aviation Boulevard
El Segundo, California 90245

Additional manuals describing this system are available. They contain
more detailed technical information for people actually using the
system. A System Users Manual assists those writing dialogs and a
System Maintengnce Manual advises those who may wish to modify the

system and add new commands, or who wish to use the file facilities.

O

ERIC

Aruitoxt provided by Eic:

ACKNOWLEDGEMENTS

The system was developed by Estelle Warner, Alfred Bork, David Robson,

Steven Wolff, Randy Engel, Tom McGrew and Harold Deering.

Louise Healey read an earlier version of this material and offered
suggestions for improvement. Steve Ashenbrenner from XDS, El1 Segundo,
contributed important early advice. William Hoyland:'of XDS has

supplied useful system assistance.
The project is supported by the National Science Foundation.

The facility described here is currently in use at the University of
California, Irvine. We would be pleased to have others who have
access to the Sigma-7 and Metasymbol make use of this system. For

more information cr copies of the programs, please contact

Alfred M. Bork
Physics Computer Development Project
University of California, Irxrvine
Irvine, California 92664

<S5

BLS

